

Affordable Development and Demonstration of a Small NTR Engine and Stage: A Preliminary NASA, DOE and Industry Assessment

(AIAA-2015-3774)

S. K. Borowski and R. J. Sefcik (NASA GRC)

J. E. Fittje and D. R. McCurdy (Vantage Partners, LLC@GRC)

A. L. Qualls and B. G. Schnitzler (ORNL)

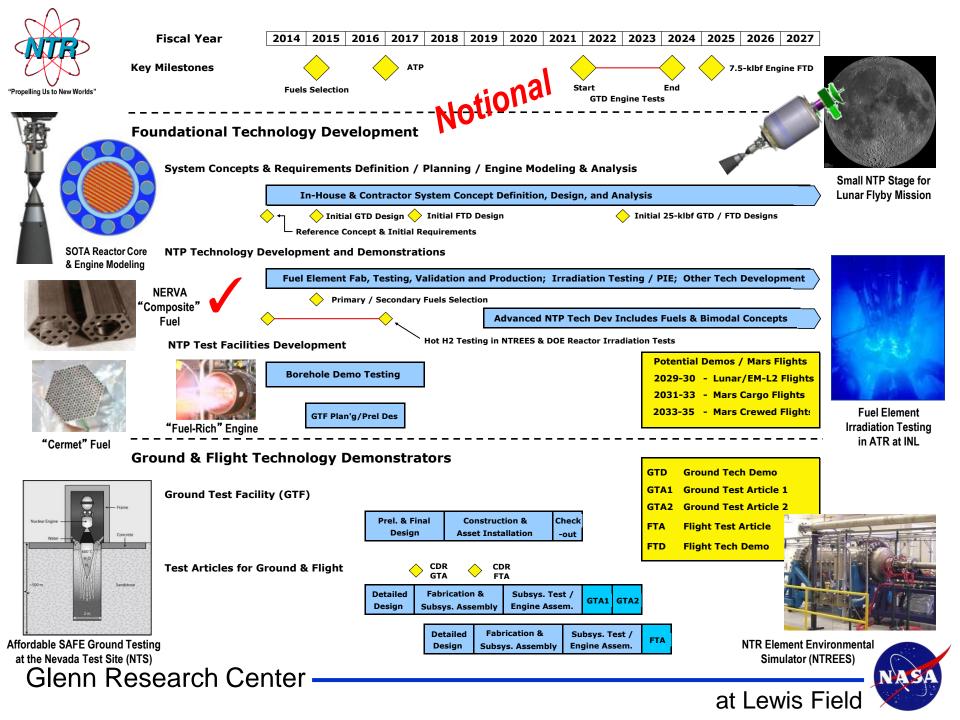
J. Werner (INL) and A. Weitzberg (DOE Consultant)

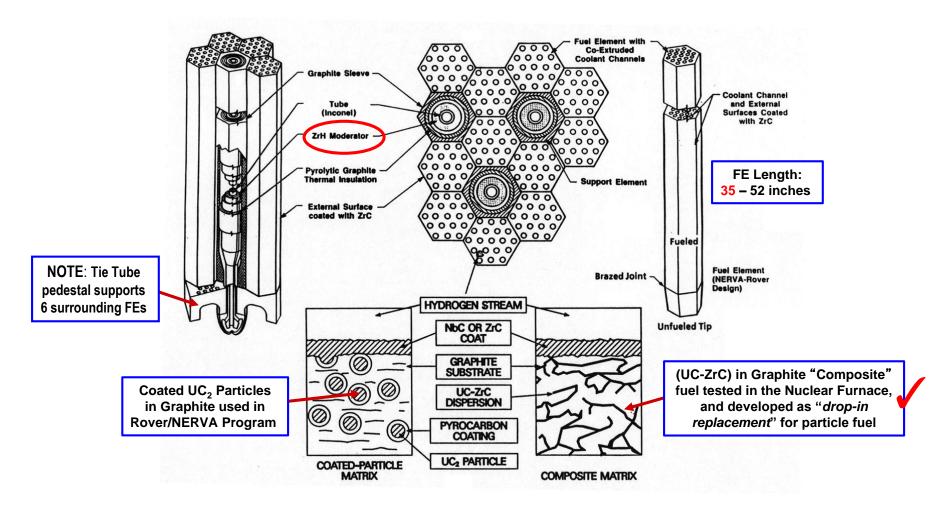
C. R. Joyner (Aerojet Rocketdyne)

216-977-7091, Stanley.K.Borowski@nasa.gov

presented at

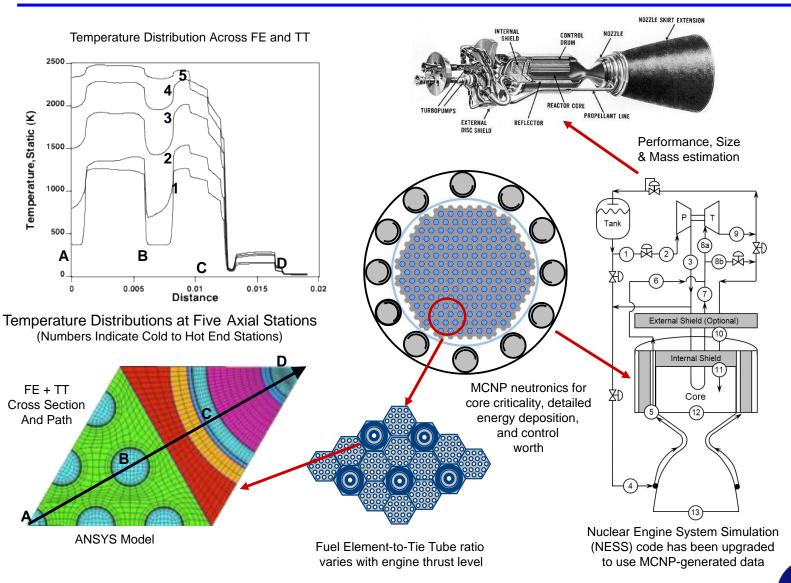
AIAA 51st Joint Propulsion Conference Orlando, FL


Monday, July 27, 2015


Overview of NTP Development Activities by NASA and DOE

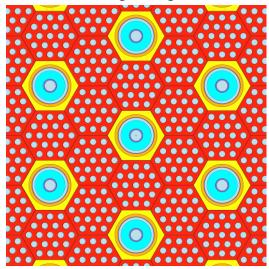
- In FY11, NASA formulated a plan for Nuclear Thermal Propulsion (NTP) development that included "Foundational Technology Development" followed by system-level "Technology Demonstrations"
- The ongoing NTP project, funded by NASA's Advanced Exploration Systems (AES) program, is focused on Foundational Technology Development and includes 5 key task activities:
 - (1) Fuel element fabrication and non-nuclear validation testing of "heritage" fuel options;
 - (2) Engine conceptual design;
 - (3) Mission analysis and engine requirements definition;
 - (4) Identification of affordable options for ground testing; and
 - (5) Formulation of an affordable and sustainable NTP development program
- Performance parameters for "Point of Departure" designs for a small "criticality-limited" and full size 25 klb_f-class engine were developed during FY's 13-14 using heritage fuel element designs for both Rover/NERVA Graphite Composite (GC) and Ceramic Metal (Cermet) fuel forms
- To focus the fuel development effort and maximize use of its resources, the AES program decided, in FY14, that a "leader-follower" down selection between GC and cermet fuel was required
- An Independent Review Panel (IRP) was convened by NASA and tasked with reviewing the available fuel data and making a recommendation to NASA. In February 2015, the IRP recommended and the AES program endorsed GC as the leader fuel
- In FY'14, a preliminary development schedule / DDT&E plan was produced by GRC, DOE & industry for the AES program. Assumptions, considerations and key task activities are presented here
- At the direction of NASA HQ (3/25/15), NASA and DOE are to work together to formulate a detailed development plan and schedule allowing the affordable development of a small (~7.5 16.5 klb_f)
 GC engine for possible flight technology demonstration (FTD) mission within a 10-year timeframe

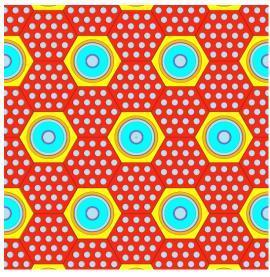
Rover / NERVA Reactor Core Configuration: SNRE Fuel Element / Tie Tube Bundle Arrangement



"Propelling Us to New Worlds"

GRC / DOE Integrated Neutronics, Multi-Physics & Engine Modeling Approach




Fuel Element (FE) – Tie Tube (TT) Arrangements for NERVA-derived Graphite Composite Engines

"Sparse" FE – TT Pattern used for Large Engines

Each FE has 4 adjacent FEs and 2 adjacent TTs with a FE to TT ratio of ~3 to 1

"SNRE" FE – TT Pattern used in Small Nuclear Rocket Engine

Each FE has 3 adjacent FEs and 3 adjacent TTs with a FE to TT ratio of ~2 to 1

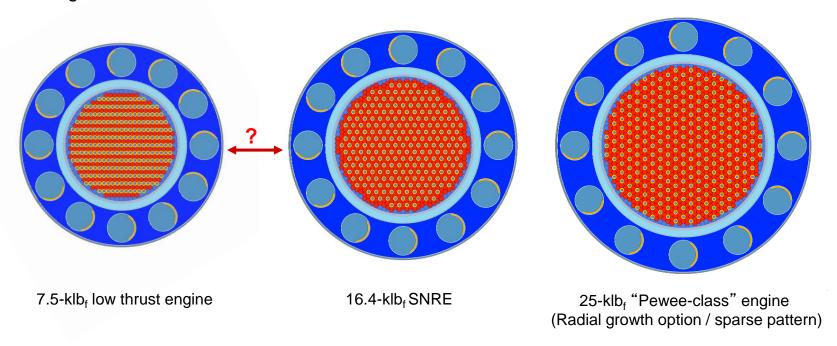
Used in full-size 25 klb_f Composite Engine Design "Dense" FE – Tie Tube Pattern used in Lower Thrust Engines

Each FE has 2 adjacent FEs and 4 adjacent TTs with a FE to TT ratio of ~1 to 1

Used in Small Criticality-Limited Composite Engine Design

NOTE: An important feature common to both the Sparse and SNRE FE – TT patterns is that each tie tube is surrounded by and provides mechanical support for 6 fuel elements

Ref: B. Schnitzler, et al., "Lower Thrust Engine Options Based on the Small Nuclear Rocket Engine Design", AIAA-2011-5846



OAK RIDGE

Development of a Common Scalable Fuel Element for Ground Testing and Flight Validation

- During the Rover program, a common fuel element / tie tube design was developed and used in the design of the 50 klbf Kiwi-B4E (1964), 75 klbf Phoebus-1B (1967), 250 klbf Phoebus-2A (June 1968), then back down to the 25 klbf Pewee engine (Nov-Dec 1968)
- NASA and DOE are evaluating a similar approach: design, build, ground then flight test
 a small engine using a common fuel element that is scalable to a larger 25 klbf thrust
 engine needed for human missions

Ref: B. Schnitzler, et al., "Lower Thrust Engine Options Based on the Small Nuclear Rocket Engine Design", AIAA-2011-5846 paper presented at the 47th Joint Propulsion Conference, San Diego, CA

Performance Characteristics for "Small-to-Full Size" GC NERVA-derived Engines

ew Worlds"	Small Citicality		SNRE			25 klb _f Axial Growth <u>Option</u>		
Performance Characteristic	Limited Eng	<u>jine</u>	<u>Baseline</u>	Baseline +	 -	Nominal	Enhanced	
Engine System	*				 	\bigstar	1	
Thrust (klb _f)	7.52		16.4	16.7		25.2	25.1	
Chamber Inlet Temperature (K)	2739		2695	2733	ı	2790	2940	
Chamber Pressure (psia)	565		450	450		1000	1000	
Nozzle Area Ratio (NAR)	300:1		100:1	300:1		300:1	300:1	
Specific Impulse (s)	894		875	900	ı	909	945	
Engine Thrust-to-Weight	1.91		2.92	3.06		3.42	3.41	
Approx. Engine Length* (m)	6.19		4.46	6.81	ı	8.69	8.69	
Length w/ Retracted Nozzle (m)	4.93		N/A	3.65		6.53	6.53	
,		?			ı ?			
Reactor	—		→	—	<u> </u>	-		
Active Fuel Length (cm)	89		l 89	89	-	132	132	
Reflector Thickness (cm)	14.7		14.7	14.7	i	14.7	14.7	
Pressure Vessel Diameter (cm)	87.7		98.5	98.5	i	98.5	98.5	
Element Fuel/Tie Tube Pattern					:			
Type	Dense		SNRE	SNRE	:	SNRE	SNRE	
Number of Fuel Elements	260		564	564		564	564	
Number of Tie-Tube Elements	251		241	241		241	241	
Fuel Fissile Loading (g U per cm ³)	0.60		0.60	0.60		0.25	0.25	
Maximum Enrichment (wt% U-235)	93		93	93	! -	93	93	
Maximum Fuel Temperature (K)	2860		2860	2860		2860	3010	
Margin to Fuel Melt (K)	40		40	40		190	40	
U-235 Mass (kg)	27.5		59.6	59.6		36.8	36.8	
		,					l	

*Varies with thrust level, chamber pressure, NAR and TPA/TVC layout

NTP Fuels and Engine Development Sequence **Nuclear & Non-Nuclear Testing**

Fuel Specimens

- Fabrication and characterization
- High temperature testing including hot H₂ exposure and flow rates
- Irradiation testing at high temperature

Fuel Elements (Prototypic Cross-Section, Segments or Full Length)

- Fabrication and characterization.
- High temperature testing including H₂ exposure and prototypic flow rates (e.g., NTREES)
- Irradiation testing

Reactor Design

- Neutronics and Physics
- Heat Transfer
- Dynamics
- Structures
- 1&C

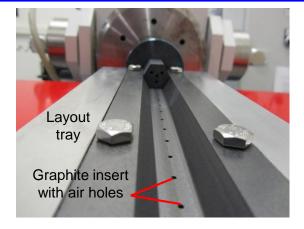
Engine Ground Test

- Prototypic fuel temperatures, hot H₂ flow rates, and operating times
- Engine test also serves as fuel qualification test

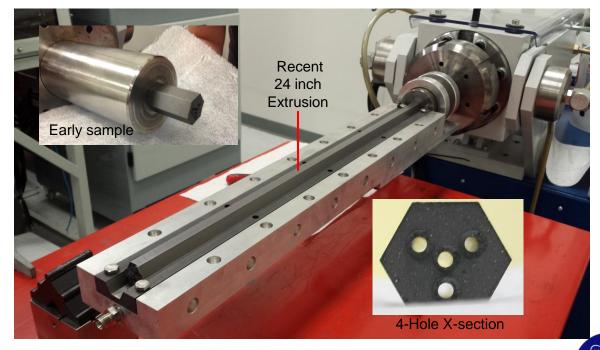
Addressing Ground Test Challenges

- Utilize the SAFE borehole or tunnels
- Use temporary facilities & services at the ground test site
- Minimize engine size & number of tests to qualify for launch
- Maximize existing facilities (e.g., DAF) and capabilities for testing and PIE

Ref: J. Werner, 47th AIAA JPC, INL, 2011

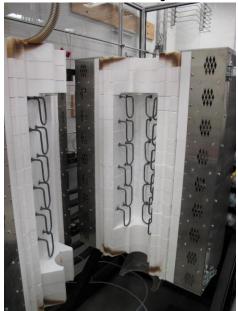


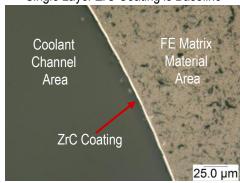
Equipment Assembled at ORNL for Fabrication of Graphite Composite (GC) Fuel Elements

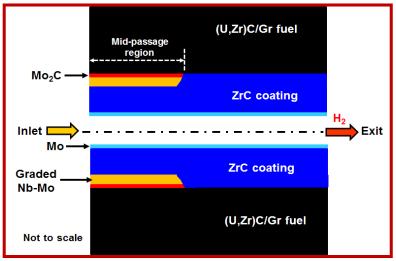


Graphite FE extruder with installed vent lines for DU capability

Extruder with 4-Hole Die




ORNL CVD Furnace for Applying Baseline ZrC Coating along with Alternative Coating Concepts


ORNL 6-zone CVD Coating Furnace

Single Layer ZrC Coating is Baseline

Multilayer Metallic Coating Concept

Advantages of Multilayer Coating Approach:

- Minimizes ZrC/(U,Zr)C-graphite matrix CTE differences.
- Ductile compliant metallic layers will accommodate residual stresses.
- Mo overlay seals cracks in the ZrC coating and reduces H₂ permeation.
- Mo-Nb layers expected to reduce H₂ permeation.
- Mo₂C expected to be a diffusion barrier for carbon.

Maximize Use of the NNSS, DAF and Existing Bore Holes / Tunnels

- Testing should be conducted at the Nevada National Security Site (NNSS) using SAFE (Subsurface Active Filtration of Exhaust) approach in existing boreholes or in long, large diameter horizontal tunnels.
- NNSS provides a large secure, safety zone (~1375 sq. miles) for conducting NTR testing.

• The Device Assembly Facility (DAF) is located within the NNSS and is available for pre-test staging (assembly and "0-power" critical testing) of engine's reactor system prior to transfer to the borehole or tunnel test location.

- DAF is a collection of interconnected steelreinforced concrete test cells. The entire complex is covered by compacted earth.
- DAF has multiple assembly / test cells; high bays have multi-ton crane capability. The assembly cells are designed to handle SNM.
- Options to use horizontal tunnels exist at the underground U1a complex or the P-tunnel complex located inside the Rainier Mesa.

Aerial View of the DAF at the NNSS

Possible Concepts of Operation for NTP Ground Testing

Fuel Element Fabrication

"Propelling Us to New Worlds"

Core Assembly

Reactor Assembly

Engine Assembly

Engine Ground Testing

Disassembly and PIE

Disposal / HEU Recovery

ORNL / Y-12

Industry

DAF @NNSS DAF @NNSS DAF @NNSS

Borehole

U1a Tunnel

extraction at test site using Portable Hot Cell

FE, components

@NNSS entomb in tunnel

Pressure Vessel,
Reactor Control

Nozzle, Pump, H2 Feed Lines

P Tunnel

Control / Data

Acquisition,

H2 Supply

Limited FE and components shipment to INL

for PIE

@INL following PIE

DAF - Device Assembly Facility
PIE - Post Irradiation Examination
NNSS - Nevada National Security Site

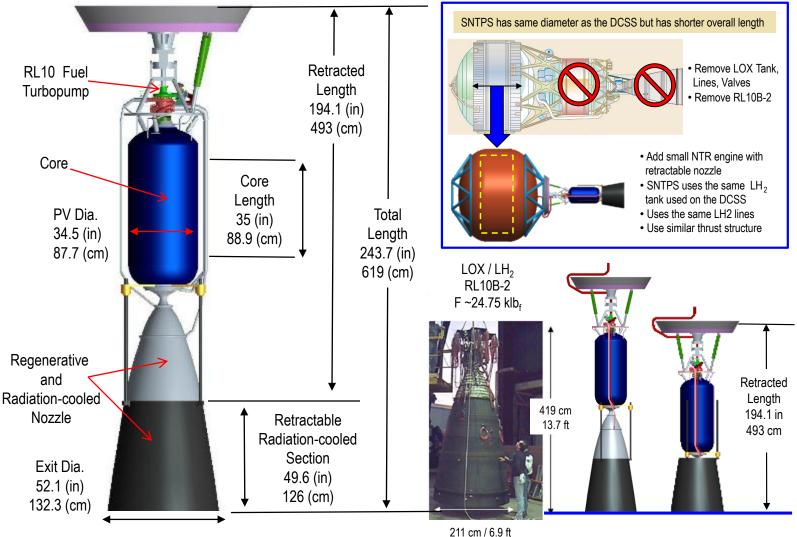
Non-nuclear Components

SHARS* "mobile hot cell" unit – funding for development provided by the IAEA

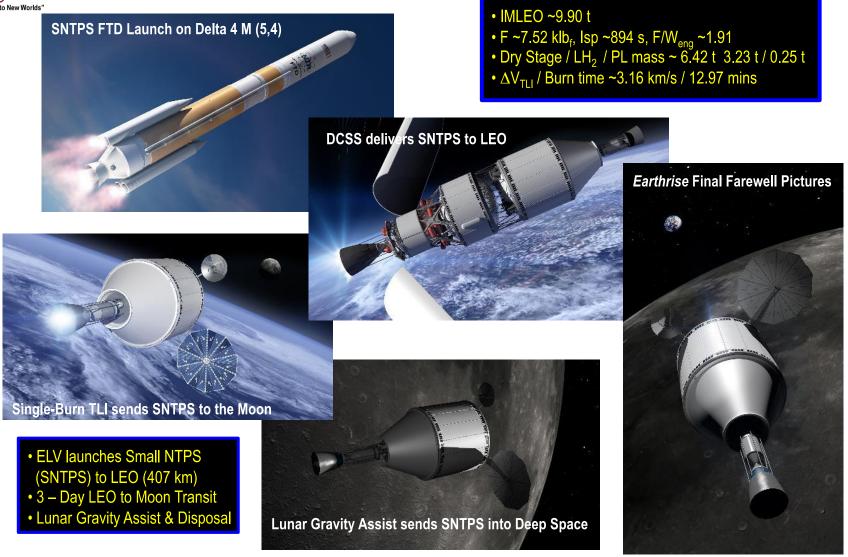
^{*}Spent High Activity Radioactive Sources (SHARS)

Other Possible Facilities and Nuclear Tests

- Cold Critical Experiments
 Confirmation of critical configuration
 Excess Reactivity
 Static physics/safety parameters
- Hot Critical Experiments
 Kinetics parameters
 Safety coefficients (feedback)
- Gamma/Neutron Exposures
 Irradiations to establish tolerance



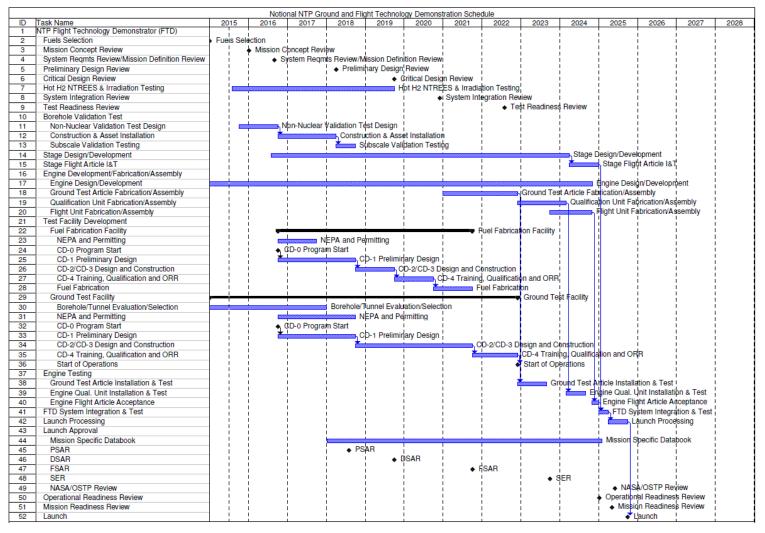
Small 7.5 klb_f NTP Engine and Stage for 2025 Lunar Flyby FTD Mission



2025 Small NTPS FTD Mission: "Single-Burn Lunar Flyby"

Assumptions for "Sporty" SNTPS GTD & FTD Mission Schedule

- A 10-year period to a ground tested "qualification engine" by 2024 is conceivable but challenging and many things must line up / flow well.
- By necessity it would be a success-oriented high–risk activity requiring immediate and serious financial commitments to the following areas:
 - Management and acquisition approach is streamlined
 - Composite fuel is the baseline and fuel element (FE) production levels are scaled up prior to complete verification of all processing activities; Testing conducted in bore holes at NTS
 - NEPA and launch safety analyses is initiated along with ID' ed shipping and ATLO facility mods
- A single "portable hot cell unit" would be co-located near the site of the candidate borehole / tunnel. The unit would be a "turnkey" procurement and used to disassemble the reactor after testing to extract a sampling of FEs and reactor components for shipment to INL for PIE. The unit would be similar to that used by the UK at their Sellafield hot cell facility or the mobile SHARS unit developed by the IAEA. Afterwards the unit would be used to disassemble the reactor into smaller groupings of parts that would be shipped off-site for final disposal in "existing" shipping casks.
- •The GTD program would focus on borehole testing of two units:
 - Engineering reactor and engine test article (90% fidelity) in 2023
 - Qualification engine (100% fidelity) in 2024 after qual-level testing (e.g., vibration) in 2023;
- The flight unit identical to the qualification unit would be launched in 2025



Notional NTP Ground & Flight Test Demonstration Milestone Schedule

Summary and Conclusions

- In FY14, NASA and DOE (NE-75, ORNL, INL), with input from industry, formulated a preliminary development plan for the AES program for testing a small GTD (~7.5 16.5 klb_f) engine in the early 2020's followed by a FTD mission of a small NTP stage around 2025
- 10-years to a FTD mission in 2025 will require an immediate start and a serious and sustained financial commitment along with a streamlined management and acquisition approach DOE
- Graphite-based "composite fuel" is the baseline; an engine using this fuel type can be built sooner than one using another less established / less tested fuel at relevant conditions DOE
- Testing should be conducted at the NNSS using existing boreholes or tunnels and should maximize
 the use of existing facilities; consider new temporary / mobile facilities only as required; new nuclear
 infrastructure is a long lead item DOE
- The FTD mission proposed is a single-burn "lunar flyby" chosen to keep things simple and more affordable; small size engine and stage can also reduce development costs and allow utilization of existing, flight proven engine hardware (e.g., hydrogen pump, nozzle, LH₂ tank, etc.)
- The keys to affordability include using: (1) proven "Graphite Composite" fuel; (2) "separate effects" testing (NTREES and irradiation) to qualify the fuel; (3) SOTA numerical models to design, build and operate the engine; (4) small engine design with a "common" FE that is scalable to larger sizes, when and if required; (5) existing DOE facilities at the NNSS (e.g., DAF, boreholes or tunnels); and (6) flight-proven, non-nuclear engine & stage hardware to maximum extent possible for the FTD mission

